Inferring Boolean network structure via correlation
نویسندگان
چکیده
MOTIVATION Accurate, context-specific regulation of gene expression is essential for all organisms. Accordingly, it is very important to understand the complex relations within cellular gene regulatory networks. A tool to describe and analyze the behavior of such networks are Boolean models. The reconstruction of a Boolean network from biological data requires identification of dependencies within the network. This task becomes increasingly computationally demanding with large amounts of data created by recent high-throughput technologies. Thus, we developed a method that is especially suited for network structure reconstruction from large-scale data. In our approach, we took advantage of the fact that a specific transcription factor often will consistently either activate or inhibit a specific target gene, and this kind of regulatory behavior can be modeled using monotone functions. RESULTS To detect regulatory dependencies in a network, we examined how the expression of different genes correlates to successive network states. For this purpose, we used Pearson correlation as an elementary correlation measure. Given a Boolean network containing only monotone Boolean functions, we prove that the correlation of successive states can identify the dependencies in the network. This method not only finds dependencies in randomly created artificial networks to very high percentage, but also reconstructed large fractions of both a published Escherichia coli regulatory network from simulated data and a yeast cell cycle network from real microarray data.
منابع مشابه
Inferring qualitative relations in genetic networks and metabolic pathways
MOTIVATION Inferring genetic network architecture from time series data of gene expression patterns is an important topic in bioinformatics. Although inference algorithms based on the Boolean network were proposed, the Boolean network was not sufficient as a model of a genetic network. RESULTS First, a Boolean network model with noise is proposed, together with an inference algorithm for it. ...
متن کاملInference of Genetic Regulatory Networks under the Best-fit Extension Paradigm
We address the problem of inferring the structure of genetic regulatory networks using the Boolean network model system. In realistic situations, gene expression measurements are noisy and lead to inconsistent observations. One learning strategy that can incorporate such inconsistencies is called the Best-Fit Extension Problem and its goal is to establish a network structure that would make as ...
متن کاملAnalysis and Practical Guideline of Constraint-Based Boolean Method in Genetic Network Inference
Boolean-based method, despite of its simplicity, would be a more attractive approach for inferring a network from high-throughput expression data if its effectiveness has not been limited by high false positive prediction. In this study, we explored factors that could simply be adjusted to improve the accuracy of inferring networks. Our work focused on the analysis of the effects of discretisat...
متن کاملInferring Boolean network states from partial information
Networks of molecular interactions regulate key processes in living cells. Therefore, understanding their functionality is a high priority in advancing biological knowledge. Boolean networks are often used to describe cellular networks mathematically and are fitted to experimental datasets. The fitting often results in ambiguities since the interpretation of the measurements is not straightforw...
متن کاملInferring Biological Networks
1. Abstract 2. Introduction 3. Computational Approaches for Identifying Gene Modules 3.1. Advanced Statistical Approaches 3.2. Matrix Decomposition Approaches 4. Computational Approaches for Inferring Gene Connectivity 4.1. ODE-based Models 4.2. Bayesian Networks 4.3. Coexpression Networks 4.4. Probabilistic Boolean Networks 4.5. Inference from Multiple Sources of Data 5. Network Analysis in Si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 27 11 شماره
صفحات -
تاریخ انتشار 2011